Tracking and recognising hand gestures, using statistical shape models
نویسندگان
چکیده
منابع مشابه
Tracking and Recognising Hand Gestures using Statistical Shape Models
Abstract Hand gesture recognition from video images is of considerable interest as a means of providing simple and intuitive man-machine interfaces. Possible applications range from replacing the mouse as a pointing device to virtual reality and communication with the deaf. We describe an approach to tracking a hand in an image sequence and recognising, in each video frame, which of five gestur...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملMoving Objects Tracking Using Statistical Models
Object detection plays an important role in successfulness of a wide range of applications that involve images as input data. In this paper we have presented a new approach for background modeling by nonconsecutive frames differencing. Direction and velocity of moving objects have been extracted in order to get an appropriate sequence of frames to perform frame subtraction. Stationary parts of ...
متن کاملmoving objects tracking using statistical models
object detection plays an important role in successfulness of a wide range ofapplications that involve images as input data. in this paper we have presented anew approach for background modeling by nonconsecutive frames differencing.direction and velocity of moving objects have been extracted in order to get anappropriate sequence of frames to perform frame subtraction. stationary parts ofbackg...
متن کاملOn Hand Gestures Recognition Using Hidden Markov Models
In this paper several results concerning static hand gesture recognition using an algorithm based on left-right Hidden Markov Models (HMM) are presented. The features used as observables in the training as well as in the recognition phases are based either on the 2D Discrete Cosine Transform (DCT) or on the Principal Component Analysis (PCA). The left-right topology of the HMM together with the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Image and Vision Computing
سال: 1997
ISSN: 0262-8856
DOI: 10.1016/s0262-8856(96)01136-5